Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen
نویسندگان
چکیده
Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed.
منابع مشابه
Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films
Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH4 gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin fil...
متن کاملUV photoemission efficiency of polycrystalline CVD diamond films
The absolute quantum efficiency of polycrystalline diamond films grown on silicon substrates by chemical vapor deposition (CVD) is reported in the range of 25–200 nm. The efficiency of boron-doped and hydrogen-activated by microwave plasma reflective photocathodes peaked at 37% at 40 nm with the sensitivity cutoff observed at ~190 nm. We confirmed that hydrogen activation is relatively stable i...
متن کاملEffect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملCVD of Aluminum Compounds on Carbon Materials in Microwave Plasma FBR
Deposition of coatings of aluminum, aluminum nitride and aluminum carbide on particulate carbon materials by means of an atmospheric pressure microwave plasma fluidized bed process is reported. Two types of short carbon fibers and a monocrystalline diamond powder were used as substrate. As source of aluminum trimethylaluminum was utilized with nitrogen and argon/hydrogen (5 vol% H2) serving as ...
متن کاملHydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure.
A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ~50 ml∕min (STP) at ~850 °C. The films were extensively evaluated by surface wettability, electron affinity, elemental co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016